6 research outputs found

    Model and Appearance Based Analysis of Neuronal Morphology from Different Microscopy Imaging Modalities

    Get PDF
    The neuronal morphology analysis is key for understanding how a brain works. This process requires the neuron imaging system with single-cell resolution; however, there is no feasible system for the human brain. Fortunately, the knowledge can be inferred from the model organism, Drosophila melanogaster, to the human system. This dissertation explores the morphology analysis of Drosophila larvae at single-cell resolution in static images and image sequences, as well as multiple microscopy imaging modalities. Our contributions are on both computational methods for morphology quantification and analysis of the influence of the anatomical aspect. We develop novel model-and-appearance-based methods for morphology quantification and illustrate their significance in three neuroscience studies. Modeling of the structure and dynamics of neuronal circuits creates understanding about how connectivity patterns are formed within a motor circuit and determining whether the connectivity map of neurons can be deduced by estimations of neuronal morphology. To address this problem, we study both boundary-based and centerline-based approaches for neuron reconstruction in static volumes. Neuronal mechanisms are related to the morphology dynamics; so the patterns of neuronal morphology changes are analyzed along with other aspects. In this case, the relationship between neuronal activity and morphology dynamics is explored to analyze locomotion procedures. Our tracking method models the morphology dynamics in the calcium image sequence designed for detecting neuronal activity. It follows the local-to-global design to handle calcium imaging issues and neuronal movement characteristics. Lastly, modeling the link between structural and functional development depicts the correlation between neuron growth and protein interactions. This requires the morphology analysis of different imaging modalities. It can be solved using the part-wise volume segmentation with artificial templates, the standardized representation of neurons. Our method follows the global-to-local approach to solve both part-wise segmentation and registration across modalities. Our methods address common issues in automated morphology analysis from extracting morphological features to tracking neurons, as well as mapping neurons across imaging modalities. The quantitative analysis delivered by our techniques enables a number of new applications and visualizations for advancing the investigation of phenomena in the nervous system

    Finding customer behavior insights for content creation in material and product sourcing using specialized topic analysis

    Get PDF
    In content creation, customer behavior insights are very important as they help creators find and create the content that drives sales. To comprehend customer needs, content creators need not just generalized information but also specific information, which can be different across markets and cultures. This information also needs some standards so it can be analyzed systematically. This paper aims to obtain customer insight into web content. Inside the web content, one possible source of this information is the tags based on customer feedback and the related entities. In this case, the product review data were collected and analyzed. However, manually analyzing feedback is a time-consuming activity. In this work, we formulated the topic analysis problem specialized for material and product sourcing, which could benefit product analysis and development. Technically, we also compared different text processing and classification methods, which set the benchmarks for reviewing the model performance in the future

    Three-dimensional neurite tracing under globally varying contrast

    Get PDF
    We study the 3D neurite tracing problem in different imaging modalities. We consider that the examined images do not provide sufficient contrast between neurite and background, and the signal-to-noise ratio varies spatially. We first split the stack into box sub-volumes, and inside each box we evolve simultaneously a number of different open-curve snakes. The curves deform based on three criteria: local image statistics, local shape smoothness, and a term that enforces pairwise attraction between snakes, given their spatial proximity and shapes. We validate our method using larva Drosophila sensory neurons imaged with confocal laser scanning microscopy, as well as publicly available datasets

    Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc

    Get PDF
    Drosophila Transmembrane channel-like (Tmc) is a protein that functions in larval proprioception. The closely related TMC1 protein is required for mammalian hearing and is a pore-forming subunit of the hair cell mechanotransduction channel. In hair cells, TMC1 is gated by small deflections of microvilli that produce tension on extracellular tip-links that connect adjacent villi. How Tmc might be gated in larval proprioceptors, which are neurons having a morphology that is completely distinct from hair cells, is unknown. Here, we have used high-speed confocal microscopy both to measure displacements of proprioceptive sensory dendrites during larval movement and to optically measure neural activity of the moving proprioceptors. Unexpectedly, the pattern of dendrite deformation for distinct neurons was unique and differed depending on the direction of locomotion: ddaE neuron dendrites were strongly curved by forward locomotion, while the dendrites of ddaD were more strongly deformed by backward locomotion. Furthermore, GCaMP6f calcium signals recorded in the proprioceptive neurons during locomotion indicated tuning to the direction of movement. ddaE showed strong activation during forward locomotion, while ddaD showed responses that were strongest during backward locomotion. Peripheral proprioceptive neurons in animals mutant for Tmc showed a near-complete loss of movement related calcium signals. As the strength of the responses of wild-type animals was correlated with dendrite curvature, we propose that Tmc channels may be activated by membrane curvature in dendrites that are exposed to strain. Our findings begin to explain how distinct cellular systems rely on a common molecular pathway for mechanosensory responses.Peer ReviewedPostprint (published version

    VISHIEN-MAAT: Scrollytelling visualization design for explaining Siamese Neural Network concept to non-technical users

    No full text
    The past decade has witnessed rapid progress in AI research since the breakthrough in deep learning. AI technology has been applied in almost every field; therefore, technical and non-technical end-users must understand these technologies to exploit them. However existing materials are designed for experts, but non-technical users need appealing materials that deliver complex ideas in easy-to-follow steps. One notable tool that fits such a profile is scrollytelling, an approach to storytelling that provides readers with a natural and rich experience at the reader’s pace, along with in-depth interactive explanations of complex concepts. Hence, this work proposes a novel visualization design for creating a scrollytelling that can effectively explain an AI concept to non-technical users. As a demonstration of our design, we created a scrollytelling to explain the Siamese Neural Network for the visual similarity matching problem. Our approach helps create a visualization valuable for a short-timeline situation like a sales pitch. The results show that the visualization based on our novel design helps improve non-technical users’ perception and machine learning concept knowledge acquisition compared to traditional materials like online articles

    Direction Selectivity in Drosophila Proprioceptors Requires the Mechanosensory Channel Tmc

    No full text
    Drosophila Transmembrane channel-like (Tmc) is a protein that functions in larval proprioception. The closely related TMC1 protein is required for mammalian hearing and is a pore-forming subunit of the hair cell mechanotransduction channel. In hair cells, TMC1 is gated by small deflections of microvilli that produce tension on extracellular tip-links that connect adjacent villi. How Tmc might be gated in larval proprioceptors, which are neurons having a morphology that is completely distinct from hair cells, is unknown. Here, we have used high-speed confocal microscopy both to measure displacements of proprioceptive sensory dendrites during larval movement and to optically measure neural activity of the moving proprioceptors. Unexpectedly, the pattern of dendrite deformation for distinct neurons was unique and differed depending on the direction of locomotion: ddaE neuron dendrites were strongly curved by forward locomotion, while the dendrites of ddaD were more strongly deformed by backward locomotion. Furthermore, GCaMP6f calcium signals recorded in the proprioceptive neurons during locomotion indicated tuning to the direction of movement. ddaE showed strong activation during forward locomotion, while ddaD showed responses that were strongest during backward locomotion. Peripheral proprioceptive neurons in animals mutant for Tmc showed a near-complete loss of movement related calcium signals. As the strength of the responses of wild-type animals was correlated with dendrite curvature, we propose that Tmc channels may be activated by membrane curvature in dendrites that are exposed to strain. Our findings begin to explain how distinct cellular systems rely on a common molecular pathway for mechanosensory responses.Peer Reviewe
    corecore